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Self-introduction 

 

 

• Researcher of high energy physics (experiment) 

• In the past,  

– Neutrino and nucleus  

– Polarized protons 

– Heavy ions 

2 



In short 

Hit them, collect debris, imagine what happened.  
A lot of events.    

*) Difference: E=mc2  
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Photon in high energy physics 

• The photon is an important probe. 

• Since the photon doesn’t feel the strong force, it 
brings information undisturbed from the collision. 
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Photon 

Other particles 



Goal for today 

• What is photon? 

• Photon interactions 

• What is Electromagnetic Calorimeter? 

• Application example (PHENIX experiment) 
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Feel free to ask any question. 



Photon (= EM wave) 
A high frequency end of the electromagnetic wave.   
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Photon (=EM wave)  
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[Hz] 

Cell phone FM AM UV IR microwave 

X-ray  ray 

1keV 1MeV 1GeV 1TeV 

E=h 
h=6.6*10^-34 [Js] 
1eV=1.6*10^-19[J] 



Photon detector examples  
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[Hz] 

1keV 1MeV 1GeV 1TeV 



Detection principle 

*) It is not specific to the photon detection.  
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Photon 

Amplifier 
Sensor  

Measure 



Strength of interactions 

• Image: wave  particle  

• Cross section (barn)  
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1 barn=10-28 m2= 10-24 cm2 

Ex)  Lead 100barn = 10-22 cm2 

10^22/NA*A/ = 3 [cm] 

1022 

1cm 

  =11.35 g/cm3 

  A=207.2 
  NA=6.02*1023 



Cross section of Lead 
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Photoelectric effect 
Compton scattering 
Pair creation, photon conversion 

K shell  
abs. edge 

When E>2me 

Electrons become friend. 



Photon conversion  
It happens only in the material. 

Momentum  

Energy 

Conservations 

Even px=0, they can not consist 
 together. 
It needs a help from the nucleus.  
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photon 
e+ 

e- 

Strong electromagnetic 
 field near the nucleus. 

(E, p) 



Electromagnetic shower 

Electrons also emit a photon 
   (Bremsstrahlung) 

A 

A 

Photon converts to electrons 

Electromagnetic cascade shower 
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e 

(This particular picture is an image.) 



Electromagnetic shower 
Electromagnetic cascade shower 

Ec: critical energy 
   radiation loss = ionization loss 
   depends on the material. 
   Ec~550MeV / Z 

90% included 

X0~180A/Z2 [g/cm2] 
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Typical length for one generation (= radiation length, X0 ) 



What happens at end of day? 

=Electromagnetic Calorimeter 

Radiation 
Photons with a long  
absorption length  
come out.   

heat 

 E 

E 
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Photomultiplier Tube (PMT) 

• One of widely used detector. You might be 
already familiar with it.  
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Input window 

Current output  



PMT structure 
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Anode current 

photon 



Detection principle summary 

• Electromagnetic Calorimeter (EMCal) 
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PMT 

Sensor Amplifier Measure 

Image 



APPLICATION  
(PHENIX EXPERIMENT) 
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PHENIX EMCal 
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= 
Many sets of  

PMT 



EMCal types 
2 sectors : PbGl (crystal) 

6 sectors: PbSc (sampling) 

22 

PbSc Quad tower module 
    1.5mm Pb, 4mm Sc 
     Wavelength shifting fibers 
     for light collection 



What can we learn from old detectors?  

• Since the basic photon interaction is the same, 
detectors are not very different.  

• The size is different.  

 

• For the detection principle, old text books are 
still useful. 
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PHENIX design was in 1980-1990’s 



Energy resolution (E/E) 

• (a) Sampling Fluctuations 

• (b) Noise, Pedestal Fluctuations 

• (c) Non uniformities, Calibration errors, 
Incomplete shower containment (leakage) 
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E/E 
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NIMA499 521 
   PHENIX PbSc EMCal 

Test beam result: 
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The “c” term is often dominant in the  
real experiment.   
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Usually it gives the best performance with 
a subset of detector. 



Calibration 

• Energy scale (Signal  Energy)  

• Uniformity (25k channels) (It determines the 
constant term) 

 

• Methods  

– Based on other measurements  

– Based on physics processes 
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In the following slides, I will show various methods. 
(a few pages/method)  



Based on other measurements 

• Test beam 

• Electron Energy/Momentum ratio 

– The tracking system measures the momentum. 

• Laser light input 

– PIN photo diode for the light intensity.  
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Electron E/p (=Energy/Momentum) 
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A electron is bent by the magnetic field.  
The momentum measured by tracking. 
 
Electron ~ photon response 
 
Compare energy (E) and momentum (p) 
(The electron mass is negligible. So E/p=1) 

Issue : low statistics 

p 

E 



Laser input 
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PIN photodiode  
didn’t work as we expected. 
 
Currently the system is used 
to check the relative time  
dependence of each tower.  

For the uniformity 

Calibration point 



Based on Physics processes 

• Spectra shape 

• Minimum ionizing particle (MIP) 

• 0 decay, mass  

 

30 



31 

Spectra slope 

max 

min 

E [GeV] 

For each tower. 

for uniformity 



MIP (Minimum ionizing particle) 
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~60% of charged particles penetrate PHENIX EMCal.  
As it gets through  the material, it kicks electrons of  
atoms. (Ionization)   

h 

...................... 



MIP (Minimum ionizing particle) 
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From particle data group 
This plot is for 8.5atm Ar-CH4 80:20 
 
The point here is the weak  
dependence of momentum  
and particle species. 
 
Typical MIP is 1.5MeV/(g/cm2) 

Offset 



MIP peak in the EMCal 
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Different  
Sectors 
of EMCal 

For scale and uniformity 



0 mass 
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0  



0 mass in the EMCal 
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21
2

sin2 EEM


 

For scale and uniformity 

Get the mass peak for every tower.  
We applied an iterative process.   



Always there are details 

• Electron E/p : difference to photon 

• Slope : incident angle dependence 

•  MIP : Only at low E point.  

• 0 mass : shift due to the slope and the finite 
energy resolution (smearing). The position 
resolution eventually goes in. 
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PHENIX calibration summary 
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Method for Type Comment 

Electron E/p Scale Other det.  Low Stat 

Laser input Uniformity Other det. Limited usage 

Spectra slope Uniformity Physics Angle dependence 

MIP Scale, Uniformity Physics One low E point  

0 mass Scale, Uniformity Physics Smearing 

It is important to have multiple methods for the cross check.  



Summary 

• Photon is an important probe. 

• It is a particle style of electromagnetic wave.  

• Photon and electron are twins.  

• Photon and electron produce a shower.  

• Electromagnetic calorimeter is used to 
measure photons in high energy experiment.  

• Calibrations are the key for the performance.  
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What I didn’t cover 

• Position resolution 

• Timing resolution 

 

• A lot of other techniques 
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